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The era of big data and AI is leading to a dramatic increase in data to be processed in systems. Such explosive data growth 

calls for substantially larger memory capacity and bandwidth, shifting the system performance bottleneck from computing to 

memory. Many studies seek to address this “memory wall” by offloading applicable functions to the near-memory side. However, 

most of them overlook the limited capacity of the memory node, which makes communication overhead a critical issue for overall 

system performance. In this whitepaper, we propose a card-type memory solution that provides extreme-scale memory capacity 

and bandwidth with a lightweight near data processor (NDP). The NDP can effectively handle data-centric workloads using 

sufficient internal memory while minimizing data movement to the host. We built our proof-of-concept (PoC) system using 

FPGAs, and conducted an experimental evaluation with a recommendation system that demonstrated approximately 2.58x 

performance gains with four such FPGA cards compared to the host. 

 

Introduction 

As the demand for big data and AI increases, data is growing explosively in both volume and variety. Such has led to the 

emergence of data-centric workloads that manipulate and analyze massive amounts of data [1]. Consequently, the burden of data 

processing and energy consumption from data movement is becoming a critical issue for this rapidly growing segment [2]. For 

the latest AI models (e.g. Google AI switch [3], Open AI GPT3 [4]) that require large-scale parameters, the energy cost of data 

movement is substantially higher than that of computation [5]. In some popular Google applications, 62.7% of the total system 

energy is spent on data movement between CPU and main memory [6]. This energy consumption due to data movement is 

expected to widen as the era of AI-based big data processing accelerates [7], rendering it essential to reduce data movement in 

order to improve performance and energy efficiency in data-centric computing systems. 

The shift from a compute-centric to a data-driven era is an opportunity for SK hynix to take on a central role in the new ICT 

(Information & Communications Technology) industry. Having defined a more granular hierarchy for memory in each data 

processing stage, we are working to make servers and other systems more efficient with targeted solutions such as High-

Bandwidth Memory (HBM), the multiprocessor-compatible Compute Express Link (CXL) interface, Processor-in-Memory 

(PIM) and Computational Memory Solution (CMS). Memory Forest (Mem4EST) shown in Figure 1 is our new initiative and 

slogan that encapsulates our strategy to build a memory-driven ecosystem with such technical expertise. Just like the lush, green 

forest it represents, the initiative will generate value from new memory systems and technologies to nurture a wider global 

ecosystem that produces ESG values for our customers and partners ‒ essentially with Memory for the Environment (E), Society 

(S), and Tomorrow (T). This paper describes the CMS, one of SK hynix Mem4EST initiatives.  

 

 

Figure 1. SK hynix Mem4EST Initiatives 
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Many researchers consider a departure from traditional CPU-centric computing systems, aka Von Neumann architecture, 

which involves complete separation of the computing and memory units. The work in [8-10] adds extra computing units close 

to the memory to process the data locally. Processing in memory (PIM) is one of the solution that addresses the data movement 

issue by processing certain tasks inside memory blocks, resulting in improvements for both performance and energy efficiency 

[11-14]. However, for some data-intensive workloads, a solution that can reduce inter-node communication by providing 

sufficient memory capacity and bandwidth to the processing unit is more suitable. In this research, we studied the architecture 

and use cases for the solution and implemented an FPGA PoC. 

 

Proposed Solution 

We propose a novel computational memory solution (CMS) that features a cost-effective, capacity-scalable memory 

architecture. The proposed solution provides scalable card-type memory expansion which supports large capacity and bandwidth 

that is additional to the host memory. By placing a lightweight NDP in the memory card, our design can fully utilize extremely 

high internal memory bandwidth while compensating for the limited bandwidth between the host and expanded memory cards. 

As the NDP processes data inside the memory card and minimizes data transfer to the host, it can greatly improve the power 

efficiency of the entire system, also resulting in total cost of ownership (TCO) savings.  
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Figure 2. Heterogeneous Computing System Architecture with Computational Memory Solution 

 

Figure 2 shows the heterogeneous computing system architecture with our solution. Here, the CMS specifically handles data-

intensive workloads, while accelerators such as GPUs and NPUs handle compute-intensive workloads among various 

applications. A card-type CMS is an expanded memory node separated from the host memory and connected via the PCIe/CXL 

interconnect. It consists of multiple modules that provide large-capacity, high-bandwidth memory. A lightweight NDP core is 

mounted on each module and performs adequate tasks from the data-centric workloads in a parallel manner. 

  



  

 

 
  4 

The key benefit of NDP is system performance improvement at reduced power consumption from data movement, enabled by 

the offloading of tasks to the near-memory side that significantly weigh on data transactions between the memory and host. To 

fully leverage the system performance gains with NDP, it is crucial to offload the appropriate functions – ones that require 

intensive data access rather than computing performance [15]. We apply a roofline [16] analysis to identify the data-intensive 

workloads across applications. The roofline analysis defines the maximum performance that can be obtained with a given system, 

and thus identifies which operations are suitable for each computing unit. With the analysis, we can extract data-intensive 

workloads that have low operational intensity (OI) and relatively less computing power requirement from the target application. 

Then, by providing extremely high memory capacity and bandwidth solutions including an NDP, the proposed design can fully 

utilize internal bandwidth to accelerate such data-intensive workloads. Figure 3 plots a roofline graph comparing an Intel Xeon 

server to CMS, footnoted with product-level specifications. It can be seen that workloads with data-intensive characteristics of 

OI less than 1.6 can run about 5.3x faster in CMS compared to an Intel x86. In addition, the data movement to the host can be 

minimized by offloading functions, which significantly reduces the result data in the process and thus greatly lowers system 

power consumption. With the proposed NDP-enabled memory cards, our solution provides cost-effective scalability for the 

system to scale up and out more easily, without having to pay for expensive servers just to increase the number of memory 

channels. 
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Figure 3. Roofline Analysis 

 

Implementation 

We implemented our PoC described heretofore using an FPGA. Figure 4 depicts the HW block diagram of the FPGA PoC. 

An Intel Xeon server is used as the host, while the CMS PoC is implemented with a Zynq UltraScale+ Sidewinder-100 FPGA 

board connected to the host server with PCIe interconnect, which will be replaced with CXL IP for memory semantic operations 

in the near future. ARM Cortex-a53 quad-core is used as the NDP in the FPGA. In this work, we evaluated our design with the 

memory capacity and bandwidth scaled down to a 16GB and 1-channel DDR4 configuration, but our product roadmap includes 

an ASIC designed to have hundreds of GBs in capacity and hundreds of GB/s in bandwidth per card with scalability. The mailbox 

and interrupt controller are responsible for communication between host and NDP, while the DMA handles data transactions. 

The buffer stores host commands for offloading and the NDP’s operation results.  
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Figure 4. HW Block Diagram of FPGA PoC 

 

The communication flow between the host and NDP is shown in Figure 5. When the host has an offloading workload, it 

continuously transmits commands to the NDP input buffer using DMA. To notify NDP that a command has been sent, a message 

loaded with metadata such as the location of the command is written to the mailbox. When the message arrives in the mailbox, 

an interrupt is generated to the NDP by the interrupt controller. When the interrupt is received, NDP reads the message and 

performs the job based on the command. After that it writes the result data to the output buffer and delivers a message about the 

result data to the mailbox. In a similar fashion as before, the interrupt controller sends an interrupt to the host, and the host reads 

the corresponding message and also reads the result data of NDP using DMA. 

The host is connected to multiple NDPs, and communication between them operates in a non-blocking mechanism. That is, 

as long as each NDP has enough space to receive commands, the host can send a command to multiple NDPs without waiting 

for the result of the previous request whenever there is an offloading workload. On their part, NDPs can continue to execute their 

job until the input buffer is completely empty. 
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Figure 5. Communication Flow between Host and NDP 
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Evaluation  

To evaluate our implemented CMS system, we selected recommendation as the suitable target application. Recommendation 

systems are widely used in Internet services such as online shopping, social network, search engine, and video streaming. 

Facebook recently proposed “Zion” [17, 18], a unified platform for AI training. Zion can handle diverse deep learning (DL) 

workloads with complex neural networks similar to the DL-based recommendation system shown in Figure 6, as well as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) [19]. However, earlier work has identified 

technical hurdles to processing the embedding layer [20-22], which has completely different computational characteristics from 

conventional CNN and RNN workloads, as the embedding layer involves an embedding lookup that consumes a large part of 

the execution time for both training and inference [20]. This performance bottleneck has been referred to as a “memory wall” to 

reflect memory capacity and bandwidth challenges [23].  
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Figure 6. Simplified Scheme for The Modern DL-based Recommendation System 

 

The recommendation system involves the following sequence: First, given features are projected into embedding vectors with 

the same dimension size. The MLP layer processes dense features (e.g., age, time), while the embedding layer handles sparser 

features (e.g., gender, item color.) Once each feature is represented by an embedding vector, the feature interaction layer 

computes the interaction between pairs of features. The upper MLP layer uses these outputs to predict click-through-rate (CTR). 

 

Layer Inference Training

Top MLP

Feature Interaction

Embedding

Bottom MLP

7.67 123.57

7.87 11.81

0.23 1.70

6.64 48.01
 

Table 1. OI of Recommendation System Layers 

 

As shown in Table 1, the embedding operation during inference has a very low OI compared to other operations such as MLP 

and feature interaction. Since embedding in inference/training constitutes simple element-wise addition along the dimension, the 

operations of the embedding layer are memory-bound in CPU or GPU. This means that system performance can be significantly 

improved by offloading the embedding to CMS, with its high memory capacity and bandwidth. Such implication is in line with 

the expectations that drove us to choose recommendation as the target application to evaluate our solution.  
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Figure 7. System Configuration of FPGA PoC 

 

The system configuration used for evaluation is shown in Figure 7. A total of four Zynq UltraScale+ Sidewinder-100 FPGA 

cards that mimic computational memory are connected to an Intel server via PCIe Gen3. The host CPU offloads the embedding 

layer of the recommendation system to some or all of the four FPGA cards. 
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Figure 8. Overall System Performance of FPGA PoC 

 

We set the synthetic dataset condition with three feature tables, 100 pooling vectors per feature, 256 dimensions, and 512 

batch size for evaluation. Figure 8 depicts the subsequent performance measurements for the recommendation system using 

multiple CMS FPGAs. The CPU and single-card combination shows performance gains over a CPU-only system via embedding 

layer acceleration. Overall performance improves with the number of cards, reaching a 2.58x enhancement on a quad-card 

configuration compared to a CPU-only system. 

By means of target application analysis and system evaluation, we have confirmed the functionality and feasibility of our 

solution. We note that since the embedding pooling size of the synthetic dataset is 100, data size is reduced by about 100x per 

card. With a larger pooling size in an actual dataset, system power consumption in data movement is expected to improve further. 
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Conclusion & Future Work 

We have presented an NDP-enabled, novel CMS in this whitepaper. The proposed design provides scalable memory 

bandwidth and capacity for extreme-scale data-centric workloads. Our design also addresses the data movement bottleneck by 

adopting an optimized NDP core and expanding the memory node capacity. The experimental results show that, compared to a 

legacy CPU system, our design presents up to 2.58x improvement in execution time.  

While we have targeted data-intensive workloads in recommendation systems for this initial research, we plan to expand the 

scope of application to data analytics applications. According to our initial experiment that analyzed the number of computations 

and memory accesses in data analytics operations, such operations require very little computation compared to a large amount 

of memory access. This implies that data analytics operations are also data-intensive workloads, for which our proposed solution 

should be highly effective as well. Based on this implication, we will propose a method for processing representative data 

analytics operations using CMS in the near future. 
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Legal disclaimer 

The information contained in this document is claimed as property of SK hynix. It is provided with the understanding that SK 

hynix assumes no liability, and the contents are provided under strict confidentiality. This document is for general guidance on 

matters of interest only. Accordingly, the information herein should not be used as a substitute for consultation or any other 

professional advice and services. SK hynix may have copyrights and intellectual property right. The furnishing of document and 

information disclosure should be strictly prohibited. SK hynix has right to make changes to dates, product descriptions, figures, 

and plans referenced in this document at any time. Therefore the information herein is subject to change without notice.   

 

About SK hynix Inc. 

SK hynix seeks to propel the semiconductor industry forward with global tech leadership, and provide a future of greater value 

to stakeholders to create a better world with information and communication technology. As the world’s third largest chipmaker 

with know-how and customer trust built over more than 38 years, SK hynix continues delivering on a comprehensive range of 

memory semiconductor solutions from DRAM and NAND Flash to CMOS image sensors.  

The company’s advanced memory technologies are driving critical innovations of the Fourth Industrial Revolution such as 

Big data, AI, Machine Learning, IoT, and Robotics. Moreover, SK hynix is aiming higher with the new “Mem4EST (Memory 

Forest)” initiative to quickly respond to future changes in the ICT ecosystem. With robust ESG management that accounts for 

value to the environment, societies, and future generations, SK hynix will continue to build competence and success around the 

globe. 
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